

MLSquare

MLSquare is an open source developer-friendly Python [http://python.org/] library, designed to make use of Deep Learning for Machine Learning developers.

Note

mlsquare python library is developed and maintained by MLSquare Foundation [http://mlsquare.org]

In the first version we have developed Dope. Dope is aimed to provide every Machine Learning Algorithm with an equivalent DNN Implementation.
The dope feature available in the mlsquare framework is aimed at making interoperability between machine learning models easier.

Getting Started!

Setting up mlsquare is simple and easy

	Create a Virtual Environment

virtualenv ~/.venv
source ~/.venv/bin/activate

	Install mlsquare package

pip install mlsquare

	Import dope() function from mlsquare and pass the sklearn model object.

>>> from mlsquare import dope
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.model_selection import train_test_split
>>> import pandas as pd
>>> from sklearn.datasets import load_diabetes

>>> model = LinearRegression()
>>> diabetes = load_diabetes()

>>> X = diabetes.data
>>> sc = StandardScaler()
>>> X = sc.fit_transform(X)
>>> Y = diabetes.target
>>> x_train, x_test, y_train, y_test =
 train_test_split(X, Y, test_size=0.60, random_state=0)

>>> m = dope(model)

>>> # All sklearn operations can be performed on m, except that the underlying implementation uses DNN
>>> m.fit(x_train, y_train)
>>> m.score(x_test, y_test)

Note

For a comprehensive tutorial please do checkout this link [https://github.com/mlsquare/mlsquare/blob/master/examples/dope.ipynb]

Contents

	Installation
	Setting up a virtual environment

	Installing the mlsquare package

	Testing the installation

	User Guide
	Importing the mlsquare module

	Load dope() method into the enviroment

	Transpiling an existing model using dope

	Developer Guide
	Getting Started

	Setup

	Adding an algorithm

	Module Reference

	License

	Authors

	Issues

	Changelog
	Version 0.1

	Supported Modules

External links

	Online documentation [https://mlsquare.readthedocs.io/] (Read the Docs)

	Downloads [http://pypi.python.org/pypi/mlsquare/] (PyPI)

	Source code [https://github.com/mlsquare/mlsquare] (Github)

Indices and tables

	Index

	Search Page

Installation Guide

This guide describes how to install mlsquare

On this page

	Setting up a virtual environment

	Installing the mlsquare package

	Testing the installation

Setting up a virtual environment

The recommended way to install mlsquare is to use a virtual
environment created by virtualenv. Setup and activate a new virtual
environment like this:

$ virtualenv envname
$ source envname/bin/activate

If you use the virtualenvwrapper scripts, type this instead:

$ mkvirtualenv envname

Installing the mlsquare package

The next step is to install mlsquare. The easiest way is to use pip to fetch
the package from the Python Package Index [http://pypi.python.org/] (PyPI).
This will also install the dependencies for Python.

(envname) $ pip install mlsquare

Note

Installation via pip installs the stable version in your environment. To install the developer version checkout the package source from GitHub [https://github.com/mlsquare/mlsquare] and run python setup.py install from the directory root. Note that developer version is not stable and there are chances that code will break. If you are not sure about it, we suggest you use the stable version.

Testing the installation

Verify that the packages are installed correctly:

(envname) $ python -c 'import mlsquare'

If you don’t see any errors, the installation was successful. Congratulations!

Next steps

Now that you successfully installed HappyBase on your machine, continue with
the User Guide to learn how to use it.

User Guide

This user guide explores the MLSquare API and should provide you with enough information to get you started. Note that this user guide is intended as an introduction to MLSquare, not to Keras or SkLearn or any other packages in general. Readers should already have a basic understanding of the packages they were using and its API.

While the user guide does cover most features, it is not a complete reference
guide. More information about the MLSquare API is available from the API
documentation.

On this page

	Importing the mlsquare module

	Load dope() method into the enviroment

	Transpiling an existing model using dope

Importing the mlsquare module

To start using the package, we need to import the module into the python enviroment.

>>> import mlsquare

If the above command doesn’t result in any errors, then the import is successful

Note

To use mlsquare you need Python 3.6 or higher

Load dope() method into the enviroment

dope() is the base function, that returns an implementation of a given model to its DNN implementation. Once a model is dope’d, users will be able to use the same work flow as their initial model on the dope’d object.

>>> from mlsquare import dope

Transpiling an existing model using dope

To demonstrate dope(), we will transpile sklearn LinearRegression and use the sklearn operations on the transpiled model.

>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> m = dope(model)

Dope maintains the same interface as the base model package
>>> m.fit(x_train, y_train)
>>> m.score(x_test, y_test)

Note

dope() function doesn’t support all the packages and the models in the package. A list of supported packages and models is available at the Supported Modules and Models

Developer Guide

Getting Started

Git and Github

Our development process heavily relies on Git and Github. If you’re unfamiliar with Git or Github workflow, a good place to start would be with this guide [https://guides.github.com/activities/hello-world/].

Slack

To get directly in touch with the team and ML Square community, you’re encouraged to join our Slack channel - https://mlsquare.slack.com/

Setup

Forking a repository

To ensure a risk-free environment to work with, you will have to fork the mlsquare repository. Once you have
forked the repository, you can call git fetch upstream and git pull 'branch-name' before you make any local.
This will ensure that your local repository is up-to-date with the remote repository.

Syncing your forked repository

Please refer to this guide [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork] if you face difficulties in syncing your fork with the mlsquare repository.

Installing mlsquare after cloning repository

After forking and updating your local repository, you might want to do the following to install the local repository
version. This will help you in testing changes you make to the repository.

cd path-to-local-repo/mlsquare
python setup.py develop

Adding an algorithm

This is for users interested in adding or contributing custom algorithms. Follow the below mentioned steps
to contribute to the existing collection of algorithms available in mlsquare.

Where to add?

Navigate to mlsquare.architectures folder. Choose your primal module(say sklearn.py [https://github.com/mlsquare/mlsquare/blob/master/src/mlsquare/architectures/sklearn.py]).
The architectures folder consists of all existing algorithm mappings. Each .py file in this folder represents a primal module.

Implementation

	Each algorithm is expected to be declared as a class. An algorithm should be registered in the registry using the @registry.register decorator.

	Use the base class available in base.py [https://github.com/mlsquare/mlsquare/blob/master/src/mlsquare/base.py#L43] as the parent class for your algorithm. Feel free to use an already existing base class(ex - glm [https://github.com/mlsquare/mlsquare/blob/master/src/mlsquare/architectures/sklearn.py#L16])
if it matches your algorithm’s needs.

	
	The following methods and attributes are expected to implemented while creating a new model,

	
	create_model() - Your model’s architecture lies in this method. Calling this method would return a compiled dnn model(ex - keras or pytorch model).

	set_params() - The conventions followed by mlsquare in defining model parameters are mentioned below. This method should handle the “flattening” of parameters.

	get_params() - Calling this method should simply return the models existing parameters.

	update_params() - This method should enable updating the model parameters for an instantiated model.

	adapter - This attribute should contain the adapter choice you have made for your algorithm.

	module_name - The primal module name(should be a string)

	name - Name that you wish the model should be reffered by.

	version - If an implementation already exists for your algorithm and you wish to improve it by a different implementation, make sure you add a meaningful version number.

	model_params - The parameters required to compile your model. Conventions to be followed are mentioned below.

Notes on conventions

	Currently mlsquare supports keras as the backend for proxy models. The convention we follow is similar to that of
keras with some minor changes.

	The parameters should be defined as a dictionary of dictionaries. The first level of dict should represent each layer. Each layer should be followed by the index of the layer.

	
	Sample parameter - This sample dict shows the parameters for a keras model with 2 layer(both hidden and visible),

	model_params = {'layer_1': {'units': 1, 'activation': 'sigmoid'},
 'layer_2': {'activation':'softmax'}
 'optimizer': 'adam',
 'loss': 'binary_crossentropy'
 }

Sample implementation

	To get started, create a base model

class MyBaseModel(GeneralizedLinearModel):
 def create_model(self, **kwargs):
 ## To parse your model from 'flattened' to 'nested'
 model_params = _parse_params(self._model_params, return_as='nested')

 model = Sequential()

 ## Define your model
 model.add(Dense(units=model_params['layer_1']['kernel_dim'],
 trainable=False, kernel_initializer='random_normal', # Connect with sklearn_config
 activation=model_params['layer_1']['activation']))
 model.add(Dense(model_params['layer_2']['units'],
 activation=model_params['layer_2']['activation']))
 model.compile(optimizer=model_params['optimizer'],
 loss=model_params['loss'],
 metrics=['accuracy'])

 return model

The above class inherits from the existing GeneralizedLinearModel. For most use cases, this would be sufficient,
unless you wish to overwrite the set_params() method.

@registry.register
class MyModel(MyBaseModel):
 def __init__(self):
 # Import the adapter
 self.adapter = MyAdapter
 self.module_name = 'PrimalModuleName'
 self.name = 'ModelName'
 self.version = 'default'
 model_params = {'layer_1': {'units': 10,
 'activation': 'linear'
 },
 'layer_2': {
 'activation': 'softmax'
 },
 'optimizer': 'adam',
 'loss': 'categorical_hinge'}

 ## Make sure you call this method after the params are defined
 self.set_params(params=model_params, set_by='model_init')

	Note:

	
	Please make sure that you “register” your model in the registery by using the @register.registry decorator.

	Define all mandatory attributes mention earlier in your model’s __init__() method.

	Set your params once you have finalized using the set_params() method.

Writing test cases

Please make sure that test cases are written with atleast 90% coverage for each new algorithm added. mlsquare utilizes pytest to execute test cases. Test cases should be added to the tests [https://github.com/mlsquare/mlsquare/tree/master/tests] folder to corresponding module’s file. For example, test cases for a newly added algorithm would be defined in the test_architectures.py [https://github.com/mlsquare/mlsquare/blob/master/tests/test_architectures.py] file. Please feel free to reachout for help via our Slack channel if you face any difficulties in writing or understanding test cases.

Once you have completed your test cases, you can run them using the following commands

cd path-to-local-repo/mlsquare
python setup.py test

Creating a Pull Request

When the required additions are made and sufficient test cases are added, please raise a Pull Request. Always make sure that raise your Pull Requests to the dev branch. Please add [WIP] to the title on PRs that are not complete and is still work in progress.

Check CI and wait for review

All commits undergo an automated check by CircleCI. This ensures build checks and executes test cases.

Reviews would be done only on commits that pass the CircleCI checks.

Do not worry if the checks fail. Failing the CI checks will not close the PR by default. You can always cross-check what went wrong in CircleCI feedback and fix the errors and update the PR.

FAQs

	
	What do you mean by “transpliling” a model?

	Model transpilation in mlsquare’s context refers to converting a given model to it’s neural network equivalent.

	
	What is a primal model?

	A primal model is model that you wish to transpile to a neural network model.

	
	What is a proxy model?

	The proxy model refers to the intermediate state that a primal undergoes to transpile itself to
a neural network model.

	
	What is Registry and what is it used for?

	mlsquare maintains a registry of the model mappings defined in the architectures folder. This is to
ensure easy access of models at point.

API Reference

License

The MIT License (MIT)

Copyright (c) 2018 MLSquare

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contributors

	Soma S. Dhavala

	Shakkeel Ahmed

	Ravi S. Mula

	Prakash Bisht

 We hear your feedback!

If you notice any issues during the usage the package mlsquare, please create an issue on GitHub [https://github.com/mlsquare/mlsquare/issues]. Before creating any issue, please check if the same issue was already created by any other user.

Creating a new Issue

	To create a new issue, navigate to the github [https://github.com/mlsquare/mlsquare] page of the project and create an issue from the issues [https://github.com/mlsquare/mlsquare/issues/new] column

	Include a short title.

	Include the error generated.

	Include the steps to reproduce it.

Changelog

Version 0.1

	Support for Linear & Logistic Regression from Sklearn

Supported Modules and Models

As of the current release, mlsquare supports the following models from the below modules

	
	sklearn

	
	LinearRegression

	LogisticRegression

We are working supporting more models and modules, however if you would like us to add any module, please write to us at info[at]mlsquare.org

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/favicon.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 MLSquare

 		
 Installation

 		
 Setting up a virtual environment

 		
 Installing the mlsquare package

 		
 Testing the installation

 		
 User Guide

 		
 Importing the mlsquare module

 		
 Load dope() method into the enviroment

 		
 Transpiling an existing model using dope

 		
 Developer Guide

 		
 Getting Started

 		
 Git and Github

 		
 Slack

 		
 Setup

 		
 Forking a repository

 		
 Syncing your forked repository

 		
 Installing mlsquare after cloning repository

 		
 Adding an algorithm

 		
 Where to add?

 		
 Implementation

 		
 Notes on conventions

 		
 Sample implementation

 		
 Writing test cases

 		
 Creating a Pull Request

 		
 Check CI and wait for review

 		
 FAQs

 		
 Module Reference

 		
 License

 		
 Authors

 		
 Issues

 		
 Changelog

 		
 Version 0.1

 		
 Supported Modules

_static/plus.png

_static/logo.png

_static/minus.png

_static/up-pressed.png

_static/up.png

