
mlsquare Documentation

MLSquare Foundation

Oct 20, 2021

Contents

1 Getting Started! 3

2 Contents 5
2.1 Installation Guide . 5
2.2 User Guide . 6
2.3 Developer Guide . 7
2.4 API Reference . 11
2.5 License . 11
2.6 Contributors . 11
2.7 Creating a new Issue . 11
2.8 Changelog . 11
2.9 Supported Modules and Models . 12

3 External links 13

4 Indices and tables 15

i

ii

mlsquare Documentation

MLSquare is an open source developer-friendly Python library, designed to make use of Deep Learning for Machine
Learning developers.

Note: mlsquare python library is developed and maintained by MLSquare Foundation

In the first version we have developed Dope. Dope is aimed to provide every Machine Learning Algorithm with
an equivalent DNN Implementation. The dope feature available in the mlsquare framework is aimed at making
interoperability between machine learning models easier.

Contents 1

http://python.org/
http://mlsquare.org

mlsquare Documentation

2 Contents

CHAPTER 1

Getting Started!

Setting up mlsquare is simple and easy

1. Create a Virtual Environment

virtualenv ~/.venv
source ~/.venv/bin/activate

2. Install mlsquare package

pip install mlsquare

3. Import dope() function from mlsquare and pass the sklearn model object.

>>> from mlsquare import dope
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.model_selection import train_test_split
>>> import pandas as pd
>>> from sklearn.datasets import load_diabetes

>>> model = LinearRegression()
>>> diabetes = load_diabetes()

>>> X = diabetes.data
>>> sc = StandardScaler()
>>> X = sc.fit_transform(X)
>>> Y = diabetes.target
>>> x_train, x_test, y_train, y_test =

train_test_split(X, Y, test_size=0.60, random_state=0)

>>> m = dope(model)

>>> # All sklearn operations can be performed on m, except that the
→˓underlying implementation uses DNN

(continues on next page)

3

mlsquare Documentation

(continued from previous page)

>>> m.fit(x_train, y_train)
>>> m.score(x_test, y_test)

Note: For a comprehensive tutorial please do checkout this link

4 Chapter 1. Getting Started!

https://github.com/mlsquare/mlsquare/blob/master/examples/dope.ipynb

CHAPTER 2

Contents

2.1 Installation Guide

This guide describes how to install mlsquare

On this page

• Setting up a virtual environment

• Installing the mlsquare package

• Testing the installation

2.1.1 Setting up a virtual environment

The recommended way to install mlsquare is to use a virtual environment created by virtualenv. Setup and
activate a new virtual environment like this:

$ virtualenv envname
$ source envname/bin/activate

If you use the virtualenvwrapper scripts, type this instead:

$ mkvirtualenv envname

2.1.2 Installing the mlsquare package

The next step is to install mlsquare. The easiest way is to use pip to fetch the package from the Python Package
Index (PyPI). This will also install the dependencies for Python.

5

http://pypi.python.org/
http://pypi.python.org/

mlsquare Documentation

(envname) $ pip install mlsquare

Note: Installation via pip installs the stable version in your environment. To install the developer version checkout
the package source from GitHub and run python setup.py install from the directory root. Note that devel-
oper version is not stable and there are chances that code will break. If you are not sure about it, we suggest you use
the stable version.

2.1.3 Testing the installation

Verify that the packages are installed correctly:

(envname) $ python -c 'import mlsquare'

If you don’t see any errors, the installation was successful. Congratulations!

Next steps

Now that you successfully installed HappyBase on your machine, continue with the User Guide to learn how to use it.

2.2 User Guide

This user guide explores the MLSquare API and should provide you with enough information to get you started. Note
that this user guide is intended as an introduction to MLSquare, not to Keras or SkLearn or any other packages in
general. Readers should already have a basic understanding of the packages they were using and its API.

While the user guide does cover most features, it is not a complete reference guide. More information about the
MLSquare API is available from the API documentation.

On this page

• Importing the mlsquare module

• Load dope() method into the enviroment

• Transpiling an existing model using dope

2.2.1 Importing the mlsquare module

To start using the package, we need to import the module into the python enviroment.

>>> import mlsquare

If the above command doesn’t result in any errors, then the import is successful

Note: To use mlsquare you need Python 3.6 or higher

6 Chapter 2. Contents

https://github.com/mlsquare/mlsquare

mlsquare Documentation

2.2.2 Load dope() method into the enviroment

dope() is the base function, that returns an implementation of a given model to its DNN implementation. Once a
model is dope’d, users will be able to use the same work flow as their initial model on the dope’d object.

>>> from mlsquare import dope

2.2.3 Transpiling an existing model using dope

To demonstrate dope(), we will transpile sklearn LinearRegression and use the sklearn operations on
the transpiled model.

>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> m = dope(model)

Dope maintains the same interface as the base model package
>>> m.fit(x_train, y_train)
>>> m.score(x_test, y_test)

Note: dope() function doesn’t support all the packages and the models in the package. A list of supported packages
and models is available at the Supported Modules and Models

2.3 Developer Guide

2.3.1 Getting Started

Git and Github

Our development process heavily relies on Git and Github. If you’re unfamiliar with Git or Github workflow, a good
place to start would be with this guide.

Slack

To get directly in touch with the team and ML Square community, you’re encouraged to join our Slack channel -
https://mlsquare.slack.com/

2.3.2 Setup

Forking a repository

To ensure a risk-free environment to work with, you will have to fork the mlsquare repository. Once you have forked
the repository, you can call git fetch upstream and git pull 'branch-name' before you make any
local. This will ensure that your local repository is up-to-date with the remote repository.

2.3. Developer Guide 7

https://guides.github.com/activities/hello-world/
https://mlsquare.slack.com/

mlsquare Documentation

Syncing your forked repository

Please refer to this guide if you face difficulties in syncing your fork with the mlsquare repository.

Installing mlsquare after cloning repository

After forking and updating your local repository, you might want to do the following to install the local repository
version. This will help you in testing changes you make to the repository.

cd path-to-local-repo/mlsquare
python setup.py develop

2.3.3 Adding an algorithm

This is for users interested in adding or contributing custom algorithms. Follow the below mentioned steps to contribute
to the existing collection of algorithms available in mlsquare.

Where to add?

Navigate to mlsquare.architectures folder. Choose your primal module(say sklearn.py). The architectures folder
consists of all existing algorithm mappings. Each .py file in this folder represents a primal module.

Implementation

1. Each algorithm is expected to be declared as a class. An algorithm should be registered in the registry using
the @registry.register decorator.

2. Use the base class available in base.py as the parent class for your algorithm. Feel free to use an already existing
base class(ex - glm) if it matches your algorithm’s needs.

3. The following methods and attributes are expected to implemented while creating a new model,

• create_model() - Your model’s architecture lies in this method. Calling this method would return
a compiled dnn model(ex - keras or pytorch model).

• set_params() - The conventions followed by mlsquare in defining model parameters are men-
tioned below. This method should handle the “flattening” of parameters.

• get_params() - Calling this method should simply return the models existing parameters.

• update_params() - This method should enable updating the model parameters for an instantiated
model.

• adapter - This attribute should contain the adapter choice you have made for your algorithm.

• module_name - The primal module name(should be a string)

• name - Name that you wish the model should be reffered by.

• version - If an implementation already exists for your algorithm and you wish to improve it by a
different implementation, make sure you add a meaningful version number.

• model_params - The parameters required to compile your model. Conventions to be followed are
mentioned below.

8 Chapter 2. Contents

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork
https://github.com/mlsquare/mlsquare/blob/master/src/mlsquare/architectures/sklearn.py
https://github.com/mlsquare/mlsquare/blob/master/src/mlsquare/base.py#L43
https://github.com/mlsquare/mlsquare/blob/master/src/mlsquare/architectures/sklearn.py#L16

mlsquare Documentation

Notes on conventions

1. Currently mlsquare supports keras as the backend for proxy models. The convention we follow is similar to that
of keras with some minor changes.

2. The parameters should be defined as a dictionary of dictionaries. The first level of dict should represent each
layer. Each layer should be followed by the index of the layer.

3. Sample parameter - This sample dict shows the parameters for a keras model with 2 layer(both hidden and visible),

model_params = {'layer_1': {'units': 1, 'activation': 'sigmoid'},
'layer_2': {'activation':'softmax'}
'optimizer': 'adam',
'loss': 'binary_crossentropy'
}

Sample implementation

1. To get started, create a base model

class MyBaseModel(GeneralizedLinearModel):
def create_model(self, **kwargs):

To parse your model from 'flattened' to 'nested'
model_params = _parse_params(self._model_params, return_as='nested')

model = Sequential()

Define your model
model.add(Dense(units=model_params['layer_1']['kernel_dim'],

trainable=False, kernel_initializer='random_normal',
→˓# Connect with sklearn_config

activation=model_params['layer_1']['activation']))
model.add(Dense(model_params['layer_2']['units'],

activation=model_params['layer_2']['activation']))
model.compile(optimizer=model_params['optimizer'],

loss=model_params['loss'],
metrics=['accuracy'])

return model

The above class inherits from the existing GeneralizedLinearModel. For most use cases, this would
be sufficient, unless you wish to overwrite the set_params() method.

@registry.register
class MyModel(MyBaseModel):

def __init__(self):
Import the adapter
self.adapter = MyAdapter
self.module_name = 'PrimalModuleName'
self.name = 'ModelName'
self.version = 'default'
model_params = {'layer_1': {'units': 10,

'activation': 'linear'
},

'layer_2': {
'activation': 'softmax'

(continues on next page)

2.3. Developer Guide 9

mlsquare Documentation

(continued from previous page)

},
'optimizer': 'adam',
'loss': 'categorical_hinge'}

Make sure you call this method after the params are defined
self.set_params(params=model_params, set_by='model_init')

Note:

1. Please make sure that you “register” your model in the registery by using the @regis-
ter.registry decorator.

2. Define all mandatory attributes mention earlier in your model’s __init__() method.

3. Set your params once you have finalized using the set_params() method.

Writing test cases

Please make sure that test cases are written with atleast 90% coverage for each new algorithm added. mlsquare
utilizes pytest to execute test cases. Test cases should be added to the tests folder to corresponding module’s file.
For example, test cases for a newly added algorithm would be defined in the test_architectures.py file. Please feel free
to reachout for help via our Slack channel if you face any difficulties in writing or understanding test cases.

Once you have completed your test cases, you can run them using the following commands

cd path-to-local-repo/mlsquare
python setup.py test

Creating a Pull Request

When the required additions are made and sufficient test cases are added, please raise a Pull Request. Always make
sure that raise your Pull Requests to the dev branch. Please add [WIP] to the title on PRs that are not complete and
is still work in progress.

Check CI and wait for review

All commits undergo an automated check by CircleCI. This ensures build checks and executes test cases.

Reviews would be done only on commits that pass the CircleCI checks.

Do not worry if the checks fail. Failing the CI checks will not close the PR by default. You can always cross-check
what went wrong in CircleCI feedback and fix the errors and update the PR.

FAQs

1. What do you mean by “transpliling” a model? Model transpilation in mlsquare’s context refers to converting
a given model to it’s neural network equivalent.

2. What is a primal model? A primal model is model that you wish to transpile to a neural network model.

3. What is a proxy model? The proxy model refers to the intermediate state that a primal undergoes to transpile
itself to a neural network model.

4. What is Registry and what is it used for? mlsquare maintains a registry of the model mappings defined in the
architectures folder. This is to ensure easy access of models at point.

10 Chapter 2. Contents

https://github.com/mlsquare/mlsquare/tree/master/tests
https://github.com/mlsquare/mlsquare/blob/master/tests/test_architectures.py

mlsquare Documentation

2.4 API Reference

2.5 License

The MIT License (MIT)

Copyright (c) 2018 MLSquare

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.6 Contributors

• Soma S. Dhavala

• Shakkeel Ahmed

• Ravi S. Mula

• Prakash Bisht

We hear your feedback!

If you notice any issues during the usage the package mlsquare, please create an issue on GitHub. Before creating
any issue, please check if the same issue was already created by any other user.

2.7 Creating a new Issue

1. To create a new issue, navigate to the github page of the project and create an issue from the issues column

2. Include a short title.

3. Include the error generated.

4. Include the steps to reproduce it.

2.8 Changelog

2.8.1 Version 0.1

• Support for Linear & Logistic Regression from Sklearn

2.4. API Reference 11

https://github.com/mlsquare/mlsquare/issues
https://github.com/mlsquare/mlsquare
https://github.com/mlsquare/mlsquare/issues/new

mlsquare Documentation

2.9 Supported Modules and Models

As of the current release, mlsquare supports the following models from the below modules

• sklearn

– LinearRegression

– LogisticRegression

We are working supporting more models and modules, however if you would like us to add any module, please write
to us at info[at]mlsquare.org

12 Chapter 2. Contents

CHAPTER 3

External links

• Online documentation (Read the Docs)

• Downloads (PyPI)

• Source code (Github)

13

https://mlsquare.readthedocs.io/
http://pypi.python.org/pypi/mlsquare/
https://github.com/mlsquare/mlsquare

mlsquare Documentation

14 Chapter 3. External links

CHAPTER 4

Indices and tables

• genindex

• search

15

	Getting Started!
	Contents
	Installation Guide
	User Guide
	Developer Guide
	API Reference
	License
	Contributors
	Creating a new Issue
	Changelog
	Supported Modules and Models

	External links
	Indices and tables

